

James Fleer

Director, Environmental Services Environmental Services Department

Via Electronic and Certified Mail

June 11, 2015

Mr. Stephen Tzhone, Superfund Remedial Project Manager Superfund AR/LA Enforcement Section (6SF-RA) U.S. Environmental Protection Agency 1445 Ross Avenue Dallas, Texas 75202

Subject: Monthly Progress Report – May 2015 Arkwood, Inc. Site, Omaha, Arkansas

Dear Mr. Tzhone:

Pursuant to Section IX (B) of the corrected Consent Decree in this matter, the following monthly progress report is being submitted for the Arkwood, Inc. Superfund Site (Site).

I. CURRENT ACTIVITIES

The following is a general description of Work (as defined in the Consent Decree) activities commenced or completed during this reporting period:

During May, we operated the main water treatment system, collected operational samples and conducted Site maintenance activities. In addition to collecting samples for laboratory analysis of pentachlorophenol, field samples were collected to measure pH, temperature, and dissolved oxygen. Water samples were collected on May 18, 2015. The analytical data is attached to this report. A summary of the data is attached for reference. Samples at the New Cricket Spring mouth and weir will continue to be collected once per month until a reduction in frequency is approved by the agency. Based on commentary from EPA representatives regarding the potential for dioxin contaminants to be transported through the fracture system via sediment/colloidal particles, MMI also collected water samples at the mouth of New Cricket Spring and at the discharge weir from the treatment system for dioxin analysis. A copy of the analytical report is attached.

A meeting to discuss the recent soil sampling/risk assessment and supplemental dye tracing reports was held in Harrison, Arkansas and at the Site on May 19, 2015. The meeting was attended by representatives of the EPQ and ADEQ. ADEQ personnel inspected the area of the proposed drainage modifications and reported the activity will require a Section 404 permit but would likely qualify for the general permit process.

McKesson Corporation

One Post Street, 34th Floor San Francisco, CA 94104

II. PROJECT DATA Attached.

III. PROJECTED ACTIVITIES

June: MMI plans to continue ongoing operations and Site maintenance activities. In addition, MMI will work to submit the application for the 404 permit to perform the drainage modifications. MMI will also initiate responses to expected comments from the risk assessment and supplemental dye trace studies.

July: MMI plans to continue ongoing operations and Site maintenance activities. Address any comments related to the 404 permit application and prepare to implement the drainage modifications. Pending receipt of the 404 permit, MMI intends to install the drainage modifications. The installation work will be performed during a sustained period of low flow from New Cricket Spring to maintain the treatment system in operation during the installation of the modifications.

<u>August</u>: MMI plans to continue ongoing operations and Site maintenance activities. Finalize any portions of the additional July work that remain uncompleted, if any.

IV. PROBLEMS ENCOUNTERED OR ANTICIPATED

No problems were encountered and no problems are anticipated.

I certify that the information contained in or accompanying this submission is true, accurate, and complete to the best of my knowledge, information and belief, and that I, as project coordinator, have made reasonable inquiry into its veracity.

If you have any questions regarding this monthly progress report, please do not hesitate to contact me at (913) 238-8348.

Sincerely,

James E. Fleer, Project Coordinator Director, Environmental Services

Enclosures

Copy:

- Mark Moix, ADEQ
- Gloria Moran, EPA Assistant Regional Counsel (6RC-S)
- · Lydia Johnson, Chief, Superfund Enforcement Branch (6SF-TE)

Arkwood, Inc. Site: Ozone Injection Pilot Study

	Variables Spring PCP								
Doto			Spring Flow	Mouth	Weir				
Date	Water Inj	O3 Inj		Mouth	weii				
12/8/05	0.5		5						
12/9/05	35	411 /40	5	00					
12/14/05	35	1lb/10 g	21	28					
12/15/05	35	1lb/10 g	30/27	29.3	5.40				
12/20/05	36	1lb/10 g	27	7.39	<5.10				
12/26/05	36	1lb/10 g	27	11.4	11.1				
1/2/06	36	1lb/10 g	21	42.4	35.1				
1/9/06	36	1lb/10 g	20	32.4	33				
1/16/06	36	1lb/10 g	27.5	32.3	<5.00				
1/23/06	36	1lb/10 g	34/32	15.9	<5.00				
1/30/06	36	1lb/10 g	41	34.3	<5.00				
2/6/06	36	1lb/10 g	38	<5.10	<5.00				
2/13/06	36	1lb/10 g	34	23.9	<5.00				
2/20/06	36	1lb/10 g	21	5.53	4.19J				
2/27/06	36	1lb/10 g	26	19.9	<5.00				
3/6/06	34	1-2lb/10 g	16	25.1	<5.00				
3/13/06	33	1-2lb/10 g	57	107	<5.00				
3/20/06	32	1-2lb/10 g	48	26.2	<5.00				
3/27/06	32	1-2lb/10 g	27	4.09J	<5.00				
4/3/06	34	2-3lb/10 g	24	11.3	<5.00				
4/10/06	33	2-3lb/10 g	16.4	39.3	<5.00				
4/17/06	34	2-3lb/10 g	22	7.94	7.82				
4/24/06	35	2-3lb/10 g	16	7.0	<5.00				
4/27/06	33	2-3lb/10 g	50	11.3	NA				
4/29/06	33	2-3lb/10 g	193	28.2	NA				
5/1/06	33	2-3lb/10 g	94	23.4	7.16				
5/8/06	33	2-3lb/10 g	59	52.3	23.3				
5/15/06	34	2-3lb/10 g	21.7	14.9	<5.00				
5/22/06	34	2-3lb/10 g	16	<5.00	<5.00				
5/30/06	34	2-3lb/10 g	16.7	5.64	<5.00				
6/7/06	0	0	3	253	<5.00				
6/12/06	0	0	2.19	LE	LE				
6/19/06	34	0	16.7	52.1	14.3				
6/26/06	34	0	16.7	74.7	<5.00				
7/5/06	35	0	21.7	9.8	<5.00				
7/17/06	34	0	16.7	21.9	4.01J				
8/7/06	34	0	16.7	23.6	18				
8/14/06	34	0	16.7	<5.00	5.22				
9/5-6/06	34	0	23	6.57	<5.10				
9/18/06	34	0	24	6.29	<5.00				
10/2/06	34	0	24	16.8	<5.00				
10/16/06	34	2-3lb/10 g	41	39.6	2.22J				
10/16/06	34	5-6lb/10g	81	92.3	19.4				
10/18/06	34	5-6lb/10g	27	118	<5.00				
11/7/06	35	2-4lb/10g	41	52.7	4.70J				
11/20/06	35	2-4lb/10g	24	57.4	<5.00				
11/30/06	35	5-6lb/10g	636	<50.0	<5.00				
12/4/06	35	5-6lb/10g	59	<54.3	<5.00				
12/6/06	35	5-6lb/10g	37	<52.6	<5.00				
12/18/06	35	2-3lb/10 g	21	24.1	<5.00				
1/8/07	35	2-3lb/10 g	21	16.7	<5.00				

1/22/07	35				
		2-3lb/10 g	79	34.6	<5.00
2/5/07	35	2-3lb/10 g	27	25.9	<5.00
2/19/07	35	2-3lb/10 g	47	19.6	<5.00
3/5/07	35	2-3lb/10 g	27	<5.00	<5.00
3/19/07	35	2-3lb/10 g	25	NA	NA
4/9/07	35	2-3lb/10 g	23	<5.00	<5.00
4/23/07	35	2-3lb/10 g	30	7.27	<5.00
5/7/07	35	2-3lb/10 g	21	2.90J	<5.00
5/21/07	35	2-3lb/10 g	20	4.36J	<5.00
6/4/07	35	2-3lb/10 g	20	<5.00	<5.00
6/18/07	35	0	21	9.62	<5.00
7/9/07	35	0	20	15.0	<5.00
7/23/07	35	0	18	8.65	<5.00
8/6/07	0	0	11	191	9.19
9/10/07	35	0	23	217	26.4
9/24/07	35	0	18	16.2	19.4
10/10/07	35	2-3lb/10 g	18	5.63	1.15J
10/22/07	35	2-4lb/10g	18	1190	53.7
11/5/07	35	2-4lb/10g	18	209	7.93
11/19/07	35	2-4lb/10g	18	19.8	24.1
12/3/07	35	2-4lb/10g	18	20.1	<5.00
12/17/07	36	2-4lb/10g	32	87.4	1.20J
1/7/08	36	2-4lb/10g	23	<5.00	<5.00
1/21/08	36	2-4lb/10g	23	58	<5.00
2/4/08	36	2-4lb/10g	24	52	<5.00
2/18/08	35	2-4lb/10g	83	57	15
3/3/08	35	5-6lb/10g	580	<5.00	<5.00
3/17/08	35	5-6lb/10g	44	11	<5.00
4/7/08	35	5-6lb/10g	78	10	<5.00
4/12/08	35	5-6lb/10g	240	6.5	NA
4/13/08	35	5-6lb/10g	100	6.8	NA
4/14/08	35	5-6lb/10g	78	8.2	NA
5/10/08	36	5-6lb/10g	68	75	<5.00
5/27/08	0	0	18	189	<5.00
6/9/08	35	2-4lb/10g	30	77	<5.00
6/23/08	35	2-4lb/10g	580	5.6	<5.00
7/7/08	35	2-4lb/10g	80	194	189
7/10/08	35	5-6lb/10g	140	254	20
7/21/08	35	5-6lb/10g	42	477	<5.00
8/4/08	35	2-4lb/10g	22	108	14
8/18/08	35	2-4lb/10g	36	31	<5.00
9/1/08	35	2-4lb/10g	25	32	<5.00
9/22/08	35	2-4lb/10g	40	22	<5.00
10/6/08	35	2-4lb/10g	21	20	<5.00
10/20/08	33	2-4lb/10g	21	13	<5.00
11/3/08	35	2-4lb/10g	24	<5.00	<5.00
11/17/08	35	2-4lb/10g	30	28	<5.00
12/1/08	35	2-4lb/10g	24	12	<5.00
12/22/08	33	2-4lb/10g	24	<5.00	<5.00
1/5/09	35	2-4lb/10g	32	7.3	<5.00
1/26/09	32	2-4lb/10g	27	<5.00	<5.00
2/9/09	33	2-4lb/10g	90	<5.00	<5.00
	22	2-4lb/10g	31	6	<5.00
2/23/09	33				10.00
2/23/09 3/9/09	34	2-4lb/10g 2-4lb/10g	30	5.7	<5.00

4/6/09	32	2-4lb/10g	38	5.8	<5.00
4/20/09	32	2-4lb/10g	243	8.5	<5.00
5/4/09	33	2-4lb/10g	343	8.2	8.7
5/18/09	33	2-4lb/10g	51	6.2	<5.00
6/8/09	35	2-4lb/10g	38	<5.00	<5.00
6/29/08	33	2-4lb/10g	25	9.1	<5.00
7/20/09	32	2-4lb/10g	47	39	<5.00
8/10/09	32	2-4lb/10g	23.7	31	<5.00
9/13/09	32	0	22	8	<5.00
10/12/09	32	0	104	21	<5.00
11/9/09	32	0	45	<50	<5.00
12/7/09	32	0	28	8.2	<5.00
1/10/10	32	0	42	13	<5.00
2/15/10	32	0	87	11.1	<5.00
3/15/10	32	0	35	<5.00	<5.00
4/15/10	32	0	40	9.62	<5.00
5/17/10	32	0	180	11	<5.00
6/13/10	32	0	43	15	<5.00
7/8/10	32	0	33	66	<2
8/19/10	0-20	0	17	16.3	<5.00
9/21/10	34	0	33	28.2	<5.00
10/18/10	37	0	20	14.9	<10.00
11/20/10	37	0	21	4.89	<4.00
12/16/10	07	0	23.55	6.15	<5.00
1/18/11	37	0	22.83	3.39	2.86
2/9/11	37	0	26.76	10.4	<10.0
3/17/11	37	0	49.03	14.2	<5.00
4/19/11 5/2/11	37	0	57.55	12.5 11	<5.00
5/3/11			310 271	8.92	
5/4/11			156	10.8	
5/4/11			123	15.8	
5/5/11			83	18	
5/9/11	37	0	33.91	43.8	<5.00
6/9/11	0	0	6.8	52.4	<5.00
7/18/11	0	0	0.575	18.6	<5.00
8/15/11	0	0	1.004	38.9	<5.00
9/13/11	0	0	0.132	<5.00	<5.00
10/18/11		0	23.71	52.4	<5.00
11/16/11		0	29.64	30.6	<5.00
12/19/11		0	60.25	11.5	<5.00
1/19/12	40	0	31.82	<5.00	<5.00
2/14/12	40	0	40.38	6.68	<5.00
3/29/12	40	0	50.81	7.95	<5.00
4/18/12	40	0	22.54	20	<5.00
5/23/12	40	0	18.18	10.9	<5.00
6/11/12	40	0	17.87	7.13	<5.15
7/30/12	40	0	15.1	5.68	<5.00
8/24/12	40	0	13.75	<5.00	<5.00
9/24/12	0	0	0.4	73.2	<5.00
10/15/12	0	0	4.48	26.7	<5.00
11/19/12	0	0	0.73	28.8	<5.00
12/28/12	0	0	1.22	25	<1.00
1/16/13	0	0	3.72	40.5	2.12
2/24/13	0	0	4.1	45.3	<1.00

Weir Parameters

рН	Temp	DO %	Distance			
7.46	17.57	341.9	12			
7.07	16.08	216.4	15			
7.85	15.4	209.1	12			
7.91	12.46	247.6	12			
6.41	13.08	241.1	12			
6.71	14.26	256.3	12			

3/13/13	0	0	23	18.6	<1.00
4/22/13	0	0	21.62	26.7	<1.00
5/16/13	0	0	14.33	18.3	<1.00
6/21/13	0	0	1.44	22.3	<1.00
7/23/13	0	0	0.934	27.1	<1.00
8/23/13	0	0	5.27	65.4	<1.00
9/18/13	0	0	1.43	54.6	<1.00
10/16/13	0	0	1.63	66.1	<1.00
11/13/13	0	0	2.68	115	1.71
12/18/13	0	0	43.77	33	1.28
1/13/14	0	0	48.39	45.8	2.55
2/17/14	0	0	6.1	75.4	<1.00
3/17/14	0	0	151.5	12.8	2.47
4/23/14	0	0	11.26	49.4	<1.00
5/19/14	0	0	56.62	73.9	<1.00
6/4/14	0	0	2.45	65.7	<1.00
7/9/14	0	0	2.32	87.1	<1.00
8/14/14	0	0	0.26	47.6	<1.00
9/10/14	0	0	0.25	12.1	<1.00
10/22/14	0	0	2.02	137	<1.00
11/17/14	0	0	1.71	103	<1.00
12/16/14	0	0	13.86	45.9	<1.00
1/13/15	0	0	5.47	88.4	<1.00
2/11/15	0	0	2.29	118	<1.00
3/17/15	0	0	47.44	20.7	1.06
4/20/15	0	0	21.61	29.7	<1.00
5/18/15	0	0	66.15	16.3	<1.00

7.63	14.02	190.7	12
6.72	14.36	214.3	12
6.52	14.66	226.8	12
6.69	18.26	238	12
7.76	19.74	249.7	12
6.92	18.33	238.2	12
7.72	18.85	196.5	12
8.03	15.9	204.7	12
7.25	11.72	236.4	12
6.65	13.99	25.92*	12 measured as mg/L not as % DO
7.13	12.36	236.7	12
6.47	13.61	259.6	12
7.1	13.4	121.6	12 Very heavy flow rate
6.36	14.88	218.7	12
7.34	15.97	219.1	12
6.68	17.49	205.1	12
7.39	17.41	202	12
7.68	20.5	214.8	12
7.75	18.93	208.7	12
7.02	13.97	199.7	12
7.22	12.2	231.1	12
6.82	14	210.1	12
7.4	12.24	257.8	12
7.57	12.17	206.4	12
7.08	13.58	13.68	12 measured as mg/L not as % DO
6.76	14.11	158.7	12
6.19	13.91	121.5	12

NOTES: Flow rates in gallons per minute (gpm)
O3 injection rates in pounds per 10 gallons

PCP concentrations in parts per billion (ppb)

NA - not analyzed

LE - Lab Error - samples not usable

11701 I-30 Bldg 1, Ste 115 - Little Rock, AR 72209 501-455-3233 Fax 501-455-6118

22 May 2015

Jim Fleer McKesson Corporation - Env. Srvcs Dept. One Post St. -- 34th Floor San Francisco, CA 94104

RE: Arkwood Monthly Sampling

SDG Number: 1505285

Enclosed are the results of analyses for samples received by the laboratory on 19-May-15 09:57. If you have any questions concerning this report, please feel free to contact me.

Sample Receipt Information:

Custody Seals							
Containers Correct							
COC/Labels Agree	<i>~</i>						
Received On Ice	~						
Temperature on Receipt	4.0°C						

Norma James / Cleresa Coins

Sincerely,

Norma James

President

This document is intended only for the use of the person(s) to whom it is expressly addressed. This document may contain information that is confidential and legally privileged. If you are not the intended recipient, you are notified that any disclosure, distribution, or copying of this document is strictly prohibited. If you have received this document in error, please destroy.

Jim Fleer

McKesson Corporation - Env. Srvcs Dept.

One Post St. -- 34th Floor San Francisco, CA 94104

Project: Arkwood Monthly Sampling

Project Number: May 2015 Date Received: 19-May-15 09:57

Lab Number: 1505285-01
Sample Name: Mouth
Date/Time Collected: 5/18/15 12:30

Sample Matrix: Water

<u>Semivolatiles</u>	<u>Units</u>	Result	Qualifier(s)	Date/Time Analyzed	<u>Batch</u>	<u>Method</u>
Pentachlorophenol	ug/L	16.3		5/20/15 17:36	A505241	8270D, Rev 4, 2007
2,4,6-Tribromophenol [surr]	%	92.1		5/20/15 17:36	A505241	8270D, Rev 4, 2007
2-Fluorophenol [surr]	%	50.9		5/20/15 17:36	A505241	8270D, Rev 4, 2007
Phenol-d5 [surr]	%	38.1		5/20/15 17:36	A505241	8270D, Rev 4, 2007

ANALYTICAL RESULTS

Lab Number: 1505285-02
Sample Name: Weir
Date/Time Collected: 5/18/15 12:15
Sample Matrix: Water

<u>Semivolatiles</u>	<u>Units</u>	Result	Qualifier(s)	Date/Time Analyzed	<u>Batch</u>	<u>Method</u>
Pentachlorophenol	ug/L	< 1.00		5/20/15 17:14	A505241	8270D, Rev 4, 2007
2,4,6-Tribromophenol [surr]	%	76.6		5/20/15 17:14	A505241	8270D, Rev 4, 2007
2-Fluorophenol [surr]	%	41.2		5/20/15 17:14	A505241	8270D, Rev 4, 2007
Phenol-d5 [surr]	%	31.3		5/20/15 17:14	A505241	8270D, Rev 4, 2007

Jim Fleer

McKesson Corporation - Env. Srvcs Dept.

One Post St. -- 34th Floor San Francisco, CA 94104

Project: Arkwood Monthly Sampling

Project Number: May 2015 Date Received: 19-May-15 09:57

QUALITY CONTROL RESULTS

Arkansas Analytical

Semivolatiles - Quality Control Analyzed: 20-May-15 15:48 By: KR									
	Reporting		Spike	Source		%REC		RPD	
.14	1 ::	Linita	Lovel	D IL	0/ DEC	13	DDD	1.5	N-t

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch A505241 - EPA 3510C_MS										
Blank (A505241-BLK1)				Prepared 8	k Analyzed:	20-May-15	5			
Pentachlorophenol	ND	1.00	ug/L							
Surrogate: 2,4,6-Tribromophenol	31.7		"	40.0		79.2	47.1-140			
Surrogate: 2-Fluorophenol	18.2		"	40.0		45.4	20.4-88.3			
Surrogate: Phenol-d5	13.8		"	40.0		34.5	11.7-70.7			
LCS (A505241-BS1)		Prepared & Analyzed: 20-May-15								
Pentachlorophenol	36.3	1.00	ug/L	40.0		90.9	51.7-124			
Surrogate: 2,4,6-Tribromophenol	33.7		"	40.0		84.3	66-132			
Surrogate: 2-Fluorophenol	19.6		"	40.0		49.0	41-72			
Surrogate: Phenol-d5	14.9		"	40.0		37.2	29-58			
Matrix Spike (A505241-MS1)	Sour	ce: 15052	35-01	Prepared 8	5					
Pentachlorophenol	95.4	2.00	ug/L	80.0	16.3	98.8	41.2-140			
Surrogate: 2,4,6-Tribromophenol	73.8		"	80.0		92.3	47.1-140			
Surrogate: 2-Fluorophenol	42.8		"	80.0		53.5	20.4-88.3			
Surrogate: Phenol-d5	32.3		"	80.0		40.4	14.7-66.9			
Matrix Spike Dup (A505241-MSD1)	Sour	ce: 15052	35-01	Prepared 8	k Analyzed:	20-May-15	5			
Pentachlorophenol	93.2	2.00	ug/L	80.0	16.3	96.1	41.2-140	2.32	8.94	
Surrogate: 2,4,6-Tribromophenol	72.5		"	80.0		90.7	47.1-140			
Surrogate: 2-Fluorophenol	37.2		"	80.0		46.5	20.4-88.3			
Surrogate: Phenol-d5	28.2		"	80.0		35.2	14.7-66.9			

All Analysis performed according to EPA approved methodology when available:

Norma James / Seresa Coins

SW 846, Revised December, 1996; EPA 600/4-79-020, Revised March, 1983; Standard Methods.

Instrument calibration and quality control samples performed at or above frequency specified in analytical method.

Reviewed by:

Norma James and/or Teresa Coins Technical Director and/or QA Officer

11701 Interstate 30, Bldg. 1, Ste. 115 Little Rock, AR 72209

PHONE: 501-455-3233 FAX: 501-455-6118

CHAIN OF CUSTODY RECORD

CLIENT INFORM	IATION						Project Des	cription		Turnaround Time					Pres	ervatio	ation Codes:				
McKeeson Corp	oration						Arkwood Month	ly Sampling	g	1 Day (100%)	1. Cool,	4 Degrees	s Centig	rade			4. Thios	ulfate for l	Dechl	orination	
14348 Nieman R	d.								2 Day (50%)	2. Sulfuric Acid (H ₂ SO ₄), pH < 2					5. Hydrochloric Acid(HCl)						
Overland Park K	S 66221						Reporting Inf	ormation		3 Day (25%)	3. Nitri	e Acid (HN	NO3), pł	I < 2			6. Sodiui	n Hydroxi	de (N	аОН), pH > 12	
							Telephone: 913	3-706-3422		5 Day (Routine)	5	7	TES	т РА	RA	MET	ERS			Bottle Type Code	
Attn: Jim Fleer						En	nail: james.fleer@	mckesson.c	om	Preservative Code:	1									G = Glass; P = Plastic	
										Bottle Type:	GA									V = Septum; A = Amber	
Sampler(s) Signature James Fleev Sampler(s) Printed						Pentachlorophenol (8270D)									Arkansas Analytical Work Order Number:						
Field	SAMPLE C	OLLECTION			Number			SAMP	LE		ach 0D)									5285	
Number	Date/s	Time/s	Grab	Comp	of	Sample Matrix	IDENTIF	ICATION/	DESC	RIPTION	Pent (827									15020	
	5/18/15	12130	Х	Comp	2		Mouth			- 1000	Х									01	
	5/18/15	12115	X		2	Water					X									02	
	2/19/12	10(1)	_^			vvater	vveii				^									02	
						-		-													
											ONS	SITE ME	ASUR	REMENTS BY Oxfo			rd Envi	ronmen	tai		
														pΗ	- 25		erature	DO%	_		
											Mouth					13.47		62.0			
													Weir	61	19	13	.91	12/1:	2		
1. Relinguished by	: (Signature)	Date/Time	I	2. Red	ceived	by: (Si	gnature)	SAN	IPLE CO	ONDITION UPON F	RECEIPT	IN LAB	Ť		RE	MARK	S/SAI	/IPLE CO		ENTS	
	D	5/18/15						1. CUSTO	DV SEA	I S:	/ You	sN		Flow R	ate	66	15				
Jan (< 1 .			1	ID	5							11	O ₃ Pow		45					
)ll	14:00		1	M					CORRECT:	Yes	sNo	0			1	Λ	-	-		
				-				3. COC/LA	BELS A	GREE:				O ₃ Con							
3. Relinquished by	: (Signature)	Date/Time		4. Re	ceived	by lab:	(Signature)	4. RECEIV	ED ON	ICE:	Ye	sN	0	O ₃ Resi	idual	- 0.	00				
110	20	5-19-15									400										
\	UPS 5-19-15 Jma			nd	6. TEMPERATURE GUN ID: HHT				4#2												
V V	0013 19517 1911								FOR C	OMPLETION BY	LAB ON	LY									

June 04, 2015

Vista Project I.D.: 1500447

Mr. James Fleer McKesson Corporation 14348 Nieman Road Overland Park, KS 66221

Dear Mr. Fleer,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on May 19, 2015. This sample set was analyzed on a rush turn-around time, under your Project Name 'Arkwood'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Project 1500447 Page 1 of 13

Vista Work Order No. 1500447 Case Narrative

Sample Condition on Receipt:

Two aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 1613

These samples were extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613 using a ZB-5MS GC column.

Holding Times

These samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

Project 1500447 Page 2 of 13

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	10
Certifications	11
Sample Receipt	12

Project 1500447 Page 3 of 13

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1500447-01	Weir	18-May-15 11:45	19-May-15 09:24	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L
1500447-02	Mouth	18-May-15 12:00	19-May-15 09:24	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L

Vista Project: 1500447 Client Project: Arkwood

Project 1500447 Page 4 of 13

ANALYTICAL RESULTS

Project 1500447 Page 5 of 13

EPA Method 1613B Sample ID: Method Blank Matrix: B5F0002 Aqueous QC Batch: Lab Sample: B5F0002-BLK1 Sample Size: Date Extracted: 01-Jun-2015 8:08 1.00 L Date Analyzed: 03-Jun-15 14:10 Column: ZB-5MS Analyst: MAS DL %R **Labeled Standard** LCL-UCL **Qualifiers** Analyte Conc. (pg/L) **EMPC Qualifiers** 0.701 IS 2,3,7,8-TCDD ND 13C-2,3,7,8-TCDD 79.5 25 - 164 1,2,3,7,8-PeCDD ND 1.60 13C-1,2,3,7,8-PeCDD 78.8 25 - 181 2.80 ND 1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 74.8 32 - 141ND 2.72 28 - 1301,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 75.2 ND 2.71 74.9 32 - 141 1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 2.17 23 - 140 1,2,3,4,6,7,8-HpCDD ND 13C-1,2,3,4,6,7,8-HpCDD 70.2 OCDD ND 3.42 65.2 17 - 157 13C-OCDD 2,3,7,8-TCDF ND 0.563 80.5 24 - 169 13C-2,3,7,8-TCDF 0.944 1,2,3,7,8-PeCDF ND 75.0 24 - 185 13C-1,2,3,7,8-PeCDF 0.999 2,3,4,7,8-PeCDF ND 13C-2,3,4,7,8-PeCDF 77.0 21 - 178 ND 0.869 26 - 152 1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 74.3 ND 0.893 26 - 123 1,2,3,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 73.8 ND 1.02 28 - 136 2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 73.1 ND 0.911 29 - 147 1,2,3,7,8,9-HxCDF 13C-1,2,3,7,8,9-HxCDF 68.7 1,2,3,4,6,7,8-HpCDF ND 0.991 57.3 28 - 143 13C-1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF ND 0.770 13C-1,2,3,4,7,8,9-HpCDF 59.4 26 - 138 ND 1.89 OCDF 13C-OCDF 58.8 17 - 157 35 - 197 CRS 37Cl-2,3,7,8-TCDD 90.2 Toxic Equivalent Quotient (TEQ) Data TEQMinWHO2005Dioxin 0.00 **TOTALS** Total TCDD ND 0.701 Total PeCDD ND 1.60 Total HxCDD ND 4.05 Total HpCDD ND 2.17 Total TCDF ND 0.563 Total PeCDF ND 2.08 Total HxCDF ND 1.03 ND 1.02 Total HpCDF

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Project 1500447 Page 6 of 13

Sample ID: OPR								EPA Method 1613B
Matrix: Aqueous Sample Size: 1.00 L	· ·		35F0002)1-Jun-2015	8:08		Lab Sample: B5F0002-BS1 Date Analyzed: 03-Jun-15 11:46	Column: ZB-5MS And	alyst: MAS
Analyte	Amt Found (pg/L)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
2,3,7,8-TCDD	165	200	82.7	67 - 158	IS	13C-2,3,7,8-TCDD	76.0	20 - 175
1,2,3,7,8-PeCDD	909	1000	90.9	70 - 142		13C-1,2,3,7,8-PeCDD	76.1	21 - 227
1,2,3,4,7,8-HxCDD	939	1000	93.9	70 - 164		13C-1,2,3,4,7,8-HxCDD	69.4	21 - 193
1,2,3,6,7,8-HxCDD	886	1000	88.6	76 - 134		13C-1,2,3,6,7,8-HxCDD	75.4	25 - 163
1,2,3,7,8,9-HxCDD	888	1000	88.8	64 - 162		13C-1,2,3,7,8,9-HxCDD	70.6	21 - 193
1,2,3,4,6,7,8-HpCDD	862	1000	86.2	70 - 140		13C-1,2,3,4,6,7,8-HpCDD	65.6	26 - 166
OCDD	1840	2000	91.9	78 - 144		13C-OCDD	61.9	13 - 199
2,3,7,8-TCDF	176	200	87.9	75 - 158		13C-2,3,7,8-TCDF	74.1	22 - 152
1,2,3,7,8-PeCDF	897	1000	89.7	80 - 134		13C-1,2,3,7,8-PeCDF	74.5	21 - 192
2,3,4,7,8-PeCDF	882	1000	88.2	68 - 160		13C-2,3,4,7,8-PeCDF	77.4	13 - 328
1,2,3,4,7,8-HxCDF	948	1000	94.8	72 - 134		13C-1,2,3,4,7,8-HxCDF	68.1	19 - 202
1,2,3,6,7,8-HxCDF	1120	1000	112	84 - 130		13C-1,2,3,6,7,8-HxCDF	50.4	21 - 159
2,3,4,6,7,8-HxCDF	916	1000	91.6	70 - 156		13C-2,3,4,6,7,8-HxCDF	71.3	22 - 176
1,2,3,7,8,9-HxCDF	927	1000	92.7	78 - 130		13C-1,2,3,7,8,9-HxCDF	69.1	17 - 205
1,2,3,4,6,7,8-HpCDF	899	1000	89.9	82 - 122		13C-1,2,3,4,6,7,8-HpCDF	56.9	21 - 158
1,2,3,4,7,8,9-HpCDF	864	1000	86.4	78 - 138		13C-1,2,3,4,7,8,9-HpCDF	56.8	20 - 186
OCDF	1820	2000	91.1	63 - 170		13C-OCDF	57.3	13 - 199
					CRS	37Cl-2,3,7,8-TCDD	90.8	31 - 191

LCL-UCL - Lower control limit - upper control limit

Project 1500447 Page 7 of 13

Sample ID: Weir								EPA Met	hod 1613B
Project: Arkwo	esson Corporation ood ay-2015 11:45	Sample Da Matrix: Sample S	Aqueous		Lab QC	Doratory Data Sample: 1500447-01 Batch: B5F0002 e Analyzed: 03-Jun-15 17:23	Date Extracted:	19-May-2015 01-Jun-2015 Analyst: MAS	
Analyte Co	onc. (pg/L)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	1.31			IS	13C-2,3,7,8-TCDD	88.1	25 - 164	
1,2,3,7,8-PeCDD	ND	1.99				13C-1,2,3,7,8-PeCDD	82.2	25 - 181	
1,2,3,4,7,8-HxCDD	3.30			J		13C-1,2,3,4,7,8-HxCDD	79.2	32 - 141	
1,2,3,6,7,8-HxCDD	26.4					13C-1,2,3,6,7,8-HxCDD	82.2	28 - 130	
1,2,3,7,8,9-HxCDD	4.86			J		13C-1,2,3,7,8,9-HxCDD	82.5	32 - 141	
1,2,3,4,6,7,8-HpCDD	1170					13C-1,2,3,4,6,7,8-HpCDD	81.4	23 - 140	
OCDD	11500					13C-OCDD	81.8	17 - 157	
2,3,7,8-TCDF	ND	0.794				13C-2,3,7,8-TCDF	85.0	24 - 169	
1,2,3,7,8-PeCDF	ND		1.12			13C-1,2,3,7,8-PeCDF	80.0	24 - 185	
2,3,4,7,8-PeCDF	ND		1.47			13C-2,3,4,7,8-PeCDF	80.0	21 - 178	
1,2,3,4,7,8-HxCDF	16.8			J		13C-1,2,3,4,7,8-HxCDF	80.9	26 - 152	
1,2,3,6,7,8-HxCDF	ND		3.58			13C-1,2,3,6,7,8-HxCDF	82.2	26 - 123	
2,3,4,6,7,8-HxCDF	7.44			J		13C-2,3,4,6,7,8-HxCDF	81.1	28 - 136	
1,2,3,7,8,9-HxCDF	2.43			J		13C-1,2,3,7,8,9-HxCDF	75.5	29 - 147	
1,2,3,4,6,7,8-HpCDF	174					13C-1,2,3,4,6,7,8-HpCDF	72.4	28 - 143	
1,2,3,4,7,8,9-HpCDF	26.3					13C-1,2,3,4,7,8,9-HpCDF	72.6	26 - 138	
OCDF	1030					13C-OCDF	72.9	17 - 157	
					CRS	37Cl-2,3,7,8-TCDD	91.8	35 - 197	
						Toxic Equivalent Quotient (TEQ) Data		
						TEQMinWHO2005Dioxin	23.6		
TOTALS									
Total TCDD		1.31							
Total PeCDD	ND		7.65						
Total HxCDD	84.0		86.8						
Total HpCDD	1770								
Total TCDF	ND		2.79						
Total PeCDF	12.2		17.0						
Total HxCDF	219		224						
Total HpCDF DL - Sample specifc esting	892		897			L- Lower control limit - upper control limit			

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Page 8 of 13 Project 1500447

Sample ID: Mouth								EPA Met	hod 1613B
Project: Arkwo	sson Corporation ood sy-2015 12:00	Sample Da Matrix: Sample S	Aqueous		Lab QC	Sample: 1500447-02 Batch: B5F0002 e Analyzed: 03-Jun-15 18:11		01-Jun-2015	
Analyte Co	nc. (pg/L)	DL 1	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	1.33			IS	13C-2,3,7,8-TCDD	77.8	25 - 164	
1,2,3,7,8-PeCDD	ND	0.944				13C-1,2,3,7,8-PeCDD	86.5	25 - 181	
1,2,3,4,7,8-HxCDD	ND	2.98				13C-1,2,3,4,7,8-HxCDD	78.0	32 - 141	
1,2,3,6,7,8-HxCDD	19.0			J		13C-1,2,3,6,7,8-HxCDD	83.8	28 - 130	
1,2,3,7,8,9-HxCDD	3.89			J		13C-1,2,3,7,8,9-HxCDD	81.9	32 - 141	
1,2,3,4,6,7,8-HpCDD	879					13C-1,2,3,4,6,7,8-HpCDD	82.0	23 - 140	
OCDD	9290					13C-OCDD	79.9	17 - 157	
2,3,7,8-TCDF	ND	0.815				13C-2,3,7,8-TCDF	82.0	24 - 169	
1,2,3,7,8-PeCDF	ND	1.35				13C-1,2,3,7,8-PeCDF	84.8	24 - 185	
2,3,4,7,8-PeCDF	ND		1.60			13C-2,3,4,7,8-PeCDF	85.8	21 - 178	
1,2,3,4,7,8-HxCDF	13.3			J		13C-1,2,3,4,7,8-HxCDF	85.1	26 - 152	
1,2,3,6,7,8-HxCDF	ND		2.59			13C-1,2,3,6,7,8-HxCDF	85.1	26 - 123	
2,3,4,6,7,8-HxCDF	4.92			J		13C-2,3,4,6,7,8-HxCDF	82.1	28 - 136	
1,2,3,7,8,9-HxCDF	1.81			J		13C-1,2,3,7,8,9-HxCDF	76.2	29 - 147	
1,2,3,4,6,7,8-HpCDF	130					13C-1,2,3,4,6,7,8-HpCDF	69.2	28 - 143	
1,2,3,4,7,8,9-HpCDF	19.6			J		13C-1,2,3,4,7,8,9-HpCDF	72.5	26 - 138	
OCDF	799					13C-OCDF	73.5	17 - 157	
					CRS	37Cl-2,3,7,8-TCDD	59.7	35 - 197	
						Toxic Equivalent Quotient (TEQ) Data		
						TEQMinWHO2005Dioxin	17.6		
TOTALS									
Total TCDD	ND	1.33							
Total PeCDD		1.74							
Total HxCDD	51.5		54.5						
Total HpCDD	1310								
Total TCDF).815							
Total PeCDF	3.37		7.40						
Total HxCDF	156		164						
Total HpCDF DL - Sample specifc estir	680								

EMPC - Estimated maximum possible concentration

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Page 9 of 13 Project 1500447

DATA QUALIFIERS & ABBREVIATIONS

This compound was also detected in the method blank.

D **Dilution** \mathbf{E} The associated compound concentration exceeded the calibration range of the instrument. H Recovery and/or RPD was outside laboratory acceptance limits. **Chemical Interference** I J The amount detected is below the Lower Calibration Limit of the instrument. See Cover Letter Conc. Concentration DL Sample-specific estimated detection limit MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

В

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Project 1500447 Page 10 of 13

CERTIFICATIONS

Accrediting Authority	Certificate Number
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2014022
Michigan Department of Natural Resources	9932
Nevada Division of Environmental Protection	CA004132015-1
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
North Carolina Department of Health & Human Services	06700
Oregon Laboratory Accreditation Program	4042-003
Pennsylvania Department of Environmental Protection	011
South Carolina Department of Health	87002001
Tennessee Department of Environment & Conservation	TN02996
Texas Commission on Environmental Quality	T104704189-15-6
Virginia Department of General Services	3138
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Project 1500447 Page 11 of 13

CHAIN OF CUSTODY

FOR LABORATORY USE ONLY	Storage
Laboratory Project ID: 150041	Secured Secured
Laboratory Project ID:	Yes No No
Storage ID WK-7	

																		TAT	Г: (С	heck	One):		
Λ Ι ι												_	9					Sta	ndar	rd: •	21	Days	
Project I.D .: Arkwood			P.O.#					Sar	mple	r: <u>Ja</u>	m e	SF	lees				_	Rus	sh (s	urch	arge	may app	ly):
													(Nan	ne)						T		days Sp	
Invoice to: Name Pher	Com	ipany Less	ion Curp One po	dress	Stree	43	4+h	Fley		Sien F	ty renc	15 50	, ,	Stat	e 9	Zip 4-10	4	Ph#	\$ Z:	38-8	348	Fax#	0933
Relinquished by: (Signature and Brinted by	ame)	Je	mes flee Date: 5/18		lin	ne: 4	OD	D	Kecer 1/11	vedby	Sign	ature an	d Printe	dylame	B.	Be	ne	die	ate.	0	119/	6 Time	0133
Relinquished by: (Signature and Printed N	(ame)		Date:		Tin	ne:	- 8	/ 5	Recei	ved by	(Sign	ature an	d Printe	d Name)			D	ate:	/	/	Time	:
			See "Sample Log-in	Che	ckli	st"	for	addit	ion	al sar	nple	e inf	orn	atio	on								12 TE WITH 15
SHIP TO: Vista Analytical Lab 1104 Windfield Way El Dorado Hills, CA	95762		Method of Shipment:	Ad	ld An	alysis	s(es)	Reques	sted	4	Mais		ER.	699		GRA.	30.28°		a a	21668			
(916) 673-1520 • Fa	x (916) 67	3-0106	Tracking No.:		Cont	7		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		\$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	3/2			To the state of th			The state of the s				//	//,	7
Sample ID	Date	Time	Location/Sample Description		Š / K	3/2		5 / 5°		3	35	₽/.	3 /	50/2		5/0	9/.	8/	/	1/2	7		
INRIC	5/18	11:45	Treatment Plant effluent	2	A	AQ			X											Г			
Moush			Trestant Plat on flest	2	A	AQ			×		T												
								П	Т		T	П											
									\neg											\top			
								\vdash	\top	\top	T												
Flowrater								\Box	\top	\top	\top									\vdash			
67.88 gpm				\vdash				\Box	\top	1	\top									\vdash			
OF.						П		\vdash	\top	\top	\top												
					\vdash	Н	\vdash	\vdash	+	\top	T	\vdash		\vdash				\vdash	\vdash	\vdash			
Special Instructions/Comments:_						_			SENI				Nam Com	pany	: M	cK	esso	n C	ion.	wet	~		
						_		OCUM ND RI					Addı City:	ess:_ Sin	On Fra	u F	oir	5h	tate:	CA.	24+h	Floor ip: <u>941</u> 0	4
													Phon	e: 9	13 2	238	8	348		Fax	x:		
Container Types: A = 1 Liter Amber, G	= Glass Jar		*Bottle Preserv	ative	Туре:	T=	Thios	sulfate,					Emai Matrix	Type	am s:	ر دی. = wc	Drink	ina W	ater.	EF = 1	Effluen	t, PP = Pul	p/Paper
P = PUF, T = MM5 Train, O= Other			O = Othe	r																			= Blood/Seru
													AQ =				_			8			

SAMPLE LOG-IN CHECKLIST

1500447

Vista Project #:

TAT Sta

vista Project #:					'A'		14)					
Committee AnniI-	Date/Time	0001	Initials:		Locati	ion: U	UR-2	r				
Samples Arrival:	05/19/15	0924	USL	3	Shelf/	_						
	Date/Time	1	Initials:		Locati	ion: (UR-	8				
Logged In:	05/20/15	1214	BU	В	Shelf/	Rack:_	B3					
Delivered By:	FedEx	UPS	On Trac	DHI	L D	Hand elivered	d Of	her				
Preservation:	lce) в	lue Ice	D	ry Ice		None	8				
Temp °C: 1 . 8	(uncorrecte	d) Time:	M27		Therm	omete	rID: IR	1				
Temp °C: 1. 9	(corrected)		0972	•	THEIII	ioniete	i iD. iik	- !				
						₩ YE	S NO	NA				
			3 B COV	Lacion		12	/	IVA				
Adequate Sample		ived?	4D WI	taine	[7							
Holding Time Acce	ptable?					- V	/	-				
Shipping Container	r(s) Intact?			10-11-0-0-0		V						
Shipping Custody S	Seals Intact?					V						
Shipping Documen	tation Preser	nt?				V						
Airbill	Trk#	ZAX	50301-	4063	228	7 1						
Sample Container	Intact?					l						
Sample Custody S	eals Intact?						12	V				
Chain of Custody /	**	umentation P	resent?			V						
COC Anomaly/San						1) / 000	/					
If Chlorinated or Dr	rinking Water	Samples, Ac	ceptable Pre	eservatio	The second second			V				
Na ₂ S ₂ O ₃ Preservat	ion Documen	ted?	coc		Sample Contain		Non	e)				
Shipping Container	*·	Vista	Client	Reta	ain)	Return	Dis	pose				

Comments: